Varianza condicional y predicciones: 7 hechos importantes

En este artículo, analizaremos la varianza condicional y las predicciones utilizando la expectativa condicional para los diferentes tipos de variables aleatorias con algunos ejemplos.

Varianza condicional

La varianza condicional de la variable aleatoria X dada Y se define de manera similar como Expectativa condicional de la variable aleatoria X dada Y como

(X|Y)=E[(XE[X|Y])2|Y]

aquí la varianza es la expectativa condicional de la diferencia entre la variable aleatoria y el cuadrado de la expectativa condicional de X dado Y cuando se da el valor de Y.

La relación entre el varianza condicional y expectativa condicional is

(X|Y) = E[X2|Y] – (E[X|Y])2

mi[(X|Y)] = mi[E[X2|Y]] – E[(E[X|Y])2]

= E[X2] – mi[(mi[X\Y])2]

como E[E[X|Y]] = E[X], tenemos

(E[X|Y]) = E[(E[X|Y])2] - (EX])2

esto es de alguna manera similar a la relación de varianza incondicional y expectativa que fue

Var (X) = E [X2] - (EX])2

y podemos encontrar la varianza con la ayuda de la varianza condicional como

Var(X) = E[var(X|Y] + var(E[X|Y])

Ejemplo de varianza condicional

Encuentre la media y la varianza del número de viajeros que entran en el autobús si las personas que llegaron a la estación de autobuses se distribuye en Poisson con media λt y el autobús inicial que llegó a la estación de autobuses se distribuye uniformemente en el intervalo (0, T) independientemente de las personas. llegado o no.

Solución:

Para encontrar la media y la varianza para cualquier tiempo t, Y es la variable aleatoria para el tiempo en que llega el autobús y N (t) es el número de llegadas.

mi[norte(y)|y = t] = mi[norte(t)|y = t]

por la independencia de Y y N (t)

=λt

ya que N (t) es Poisson con media \lambda t
Por lo tanto

E[N(Y)|Y]=λY

así que tomar expectativas da

E[NORTE(Y)] = λE[Y] = λT / 2

Para obtener Var (N (Y)), usamos la fórmula de varianza condicional

lagrida editor de latex 21

así

(NORTE(Y)|Y) = λY

E[NORTE(Y)|Y] = λY

Por lo tanto, de la fórmula de varianza condicional,

Var(N(Y)) = E[λY]+(λY)

=λT/2 + λ2T2/ 12

donde hemos utilizado el hecho de que Var (Y) = T2 / 12.

Varianza de una suma de un número aleatorio de variables aleatorias

Considere la secuencia de independientes e idénticamente distribuidos variables aleatorias X1,X2,X3,………. y otra variable aleatoria N independiente de esta secuencia, encontraremos varianza de la suma de esta secuencia como

CódigoCogsEqn 92

usando

lagrida editor de latex 48

lo cual es obvio con la definición de varianza y varianza condicional para la variable aleatoria individual a la suma de la secuencia de variables aleatorias, por lo tanto

CódigoCogsEqn 93

Predicción

En la predicción, el valor de una variable aleatoria se puede predecir sobre la base de la observación de otra variable aleatoria, para la predicción de la variable aleatoria Y, si la variable aleatoria observada es X, usamos g (X) como la función que indica el valor predicho, obviamente, intente elegir g (X) cerrado a Y para esto, la mejor g es g (X) = E (Y | X) para esto debemos minimizar el valor de g usando la desigualdad

lagrida editor de latex 49

Esta desigualdad la podemos obtener como

lagrida editor de latex 22

Sin embargo, dado X, E [Y | X] -g (X), siendo una función de X, puede tratarse como una constante. Por lo tanto,

lagrida editor de latex 23

que da la desigualdad requerida

lagrida editor de latex 50

Ejemplos de predicción

1. Se observa que la altura de una persona es de seis pies, cuál sería la predicción de la altura de su hijo después de adulto si la altura del hijo que ahora es x pulgadas se distribuye normalmente con media x + 1 y varianza 4.

Solución: sea X la variable aleatoria que denota la altura de la persona e Y sea la variable aleatoria para la altura del hijo, entonces la variable aleatoria Y es

Y = X + e + 1

aquí e representa la variable aleatoria normal independiente de la variable aleatoria X con media cero y varianza cuatro.

entonces la predicción para la altura del hijo es

lagrida editor de latex 24

por lo que la altura del hijo será de 73 pulgadas después del crecimiento.

2. Considere un ejemplo de envío de señales desde la ubicación A y la ubicación B, si desde la ubicación A se envía un valor de señal s que en la ubicación B recibió por distribución normal con media sy varianza 1, mientras que si la señal S enviada en A se distribuye normalmente con media \ mu y varianza \ sigma ^ 2, ¿cómo podemos predecir que el valor de señal R enviado desde la ubicación A será recibido r en la ubicación B?

Solución: Los valores de la señal S y R denotan aquí las variables aleatorias distribuidas normalmente, primero encontramos la función de densidad condicional S dada R como

lagrida editor de latex 25

este K es independiente de S, ahora

lagrida editor de latex 26

aquí también C1 y C2 son independientes de S, por lo que el valor de la función de densidad condicional es

Imagen de WhatsApp 2022 09 10 en 11.02.40 PM

C también es independiente de s, por lo tanto, la señal enviada desde la ubicación A como R y recibida en la ubicación B como r es normal con media y varianza

lagrida editor de latex 27

y el error cuadrático medio para esta situación es

lagrida editor de latex 28

Predictor lineal

Cada vez que no podemos encontrar la función de densidad de probabilidad conjunta, incluso se conoce la media, la varianza y la correlación entre dos variables aleatorias, en tal situación, el predictor lineal de una variable aleatoria con respecto a otra variable aleatoria es muy útil que puede predecir el mínimo. , entonces para el predictor lineal de la variable aleatoria Y con respecto a la variable aleatoria X tomamos ayb para minimizar

lagrida editor de latex 29

Ahora diferencie parcialmente con respecto a ayb obtendremos

lagrida editor de latex 26 1

resolviendo estas dos ecuaciones para un nd b obtendremos

lagrida editor de latex 31

minimizando así esta expectativa da el predictor lineal como

lagrida editor de latex 32

donde las medias son las medias respectivas de las variables aleatorias X e Y, el error para el predictor lineal se obtendrá con la expectativa de

varianza condicional
varianza condicional: error en la predicción

Este error estará más cerca de cero si la correlación es perfectamente positiva o perfectamente negativa, es decir, el coeficiente de correlación es +1 o -1.

Conclusión

La varianza condicional para lo discreto y variable aleatoria continua Se discutieron con diferentes ejemplos, una de las aplicaciones importantes de la expectativa condicional en la predicción también se explica con ejemplos adecuados y con el mejor predictor lineal; si necesita más lectura, consulte los enlaces a continuación.

Para obtener más publicaciones sobre matemáticas, consulte nuestro Página de matemáticas

Un primer curso de probabilidad de Sheldon Ross

Esquemas de probabilidad y estadística de Schaum

Una introducción a la probabilidad y la estadística por ROHATGI y SALEH